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Abstract 
In this paper, the multi-asset Black-Scholes model is studied in terms of the im- 
portance that the correlation parameter space (equivalent to an N dimensional 
hypercube) has in the solution of the pricing problem. It is shown that inside of this 
hypercube there is a surface, called the Kummer surface KΣ , where the determinant 
of the correlation matrix ρ  is zero, so the usual formula for the propagator of the 
N asset Black-Scholes equation is no longer valid. Worse than that, in some regions 
outside this surface, the determinant of ρ  becomes negative, so the usual pro- 
pagator becomes complex and divergent. Thus the option pricing model is not well 
defined for these regions outside KΣ . On the Kummer surface instead, the rank of 
the ρ  matrix is a variable number. By using the Wei-Norman theorem, the pro- 
pagator over the variable rank surface KΣ  for the general N asset case is computed. 
Finally, the three assets case and its implied geometry along the Kummer surface is 
also studied in detail. 
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1. Introduction 

Since the seminal work of Black, Scholes and Merton on option pricing, see [1] [2], an 
important research agenda has been developed on the subject. This research has mainly 
centered in extending the basic Black and Scholes model to well known empirical 
regularities, with the hope of improving the predicting power for the famous formula, 
see for example [3]-[6]. An interesting extension has been the modeling of many 
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underlying assets, which has been called the multi-asset Black-Scholes model [3] [7]. In 
this case, the option price satisfies a diffusion equation considering many related assets. 
The first work addressing this problem in the literature was Margrabe (1978), see [8]. 
The Margrabe formula considered an exchange option, which gives its owner the right, 
but not the obligation, to exchange b units of one asset into a unit of another asset at a 
specific point in time. Specifically, Margrabe derived a closed-form expression for the 
option by taking one of the underlying assets as a numeraire and then applying the 
Black and Scholes standard formulation. Later Stulz [9] found analytical formulae for 
European put and call options on the minimum or the maximum of two risky assets. In 
this particular case, the solution is expressed in terms of bivariate cumulative standard 
normal distributions, and when the strike price of the option is zero the value reduces 
to the Margrabe pricing. Other interesting papers that follow in this literature are [10]- 
[15]. The numerical implementation of the solution of the multi-asset Black-Scholes 
model is increasingly difficult for models with more that three assets, see for instance 
[16]-[18]. One important point, that has been missed in the literature, is that in all of 
the multi-asset Black-Scholes models mentioned above, the relationship between assets 
is modeled by their correlations, and hence it is implicitly assumed that a well behaved 
multivariate Gaussian distribution must exist in order to have a valid solution.  

In this paper, the multi-asset Black-Scholes model is studied in terms of the im- 
portance that the correlation parameter space (which is equivalent to an N dimensional 
hypercube) has in the solution of the option pricing problem. It is shown that inside of 
this hypercube there is a surface, called the Kummer surface KΣ  [19]-[22], where the 
determinant of the correlation matrix ρ  is zero, so over KΣ  the usual formula for 
the propagator of the N asset Black-Scholes equation is no longer valid. Worse than 
that, outside this surface, there are points where the determinant of ρ  becomes 
negative, so the usual propagator becomes complex and divergent. Thus the option 
pricing model is not well defined for some regions outside KΣ . On KΣ  the rank of 
ρ  matrix is a variable number, depending on which sector of the Kummer surface the 
correlation parameters are lying. By using the Wei-Norman theorem [23]-[26], the 
propagator along the Kummer surface KΣ , for the N assets case is found. This 
expression is valid whatever the value of the ρ  matrix ranks over KΣ .  

This paper is organized as follows. Section 2 describes the traditional multi-asset 
Black-Scholes model. In Section 3, the problem is formulated as a N dimensional 
diffusion equation. In Section 4, the implied geometry of the correlation matrix space is 
analyzed, specially when its determinant is zero, which coincides with a Kummer 
surface in algebraic geometry. The Kummer surface and its geometry are reviewed for 
the particular case of three assets in Section 4.1. In Section 5, by using the Wei-Norman 
theorem the propagator over the variable rank surface KΣ  for a general N asset case is 
computed. Finally, some conclusions and future research are presented in Section 6.  

2. The Multi-Asset Black-Scholes Model  

Consider a portfolio consisting of one option and N underlying assets. Let iS  be the 
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price processes for the assets; 1, ,i N=   where each asset satisfies the usual dynamic  

d d di i i i i iS S S Wα τ σ= +                              (1) 

1, ,i N=   and the N  Wiener processes iW  are correlated according to  

d d di j ijW W ρ τ=                                 (2) 

where ρ  is the symmetric matrix  

12 13 14 1

12 23 24 2

1 2 3 4

1
1

1

N

N

N N N N

ρ ρ ρ ρ
ρ ρ ρ ρ

ρ

ρ ρ ρ ρ

 
 
 =
 
 
 





    



                    (3) 

so  

d d di j i j i j ijS S S Sσ σ ρ τ=                            (4) 

If the price process for the option is ( )1 2, , , ,nS S S τΠ = Π  , the value V of the 
portfolio is given by  

i i
i

V S= Π − ∆∑                               (5) 

where i∆  are the shares of each asset in the portfolio. The self-financing portfolio 
condition ensures that  

d d di i
i

V S= Π − ∆∑                            (6) 

and applying It Lemma for Π  one gets  

2

,

1d d d d d d
2i i j i

i i j ii i j

V S S S S
S S S

τ
τ

 ∂Π ∂Π ∂ Π
= + + − ∆  ∂ ∂ ∂ ∂ 

∑ ∑ ∑            (7) 

According to [4], for a free arbitrage set of N assets, the return of the portfolio is  

d dV rV τ=                                (8) 

and from Equations (7) and (8) one has  

( )

( )

2

,

1d d d d
2

d d d

i i i i i i j i j ij
i i ji i j

i i i i i i i i
i i

τ S τ S W S S τ
S S S

S τ S W r S

α σ σ σ ρ
τ

α σ τ

∂Π ∂Π ∂ Π
+ + +

∂ ∂ ∂ ∂

 − ∆ + = Π − ∆ 
 

∑ ∑

∑ ∑
          (9) 

Collecting dτ  and d iW  terms in the above equation one gets:  
2

,

1 0
2i i i j i j ij i i i j j

i i j i ji i j

S S S S r S
S S S
α σ σ ρ α

τ
 ∂Π ∂Π ∂ Π

+ + − ∆ − Π − ∆ = ∂ ∂ ∂ ∂  
∑ ∑ ∑ ∑    (10) 

and  

d 0i i i i i i
i i

S S W
S
σ σ

 ∂Π
− ∆ = ∂ 

∑                      (11) 

From Equation (11), and given the independence of the iW  for 1, ,i N=    
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0i i i i i
i

S S
S
σ σ∂Π

− ∆ =
∂

                         (12) 

or equivalently  

i
iS

∂Π
∆ =

∂
                              (13) 

so one arrives at the multi-asset Black-Scholes equation  
2

,

1 0
2 i j i j ij j

i j ji j j

S S r S
S S S

σ σ ρ
τ

 ∂Π ∂ Π ∂Π
+ + −Π =  ∂ ∂ ∂ ∂ 
∑ ∑             (14) 

which must be integrated with the final condition  

( ) ( ),TΠ = ΦS S  

for constant r, iα , iσ  and a simple contingent claim Φ .  

3. The Multi-Asset Black-Scholes Equation as a N Dimensional  
Diffusion Equation  

Here, some transformations are developed, which maps the multi-asset option pricing 
equation in a more simpler diffusion equation. If one makes the change of variables  

( ) 21ln
2i i ix S r σ τ = − − 

 
                       (15) 

in (14), one can map this equation to  
2

,

1 0
2 i j ij

i j i j

r
x x

σ σ ρ
τ

∂Π ∂ Π
+ − Π =

∂ ∂ ∂∑  

At least if one defines Ψ  as  

( ) ( ) ( ), e ,r T ττ τ− −Π = Ψx x                       (16) 

then Ψ  satisfies the equation  
2

,

1 0
2 i j ij

i j i jx x
σ σ ρ

τ
∂Ψ ∂ Ψ

+ =
∂ ∂ ∂∑  

Now, by defining the variables  

i
i

i

xχ
σ

=                                (17) 

the above equation can be written as  
2

,

1 0
2 ij

i j i j

ρ
τ χ χ

∂Ψ ∂ Ψ
+ =

∂ ∂ ∂∑  

And finally, by defining the forward time coordinate  
t T τ= −                                (18) 

one arrives at  
2

,

1
2 ij

i j i jt
ρ

χ χ
∂Ψ ∂ Ψ

=
∂ ∂ ∂∑                          (19) 
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Now performing the transformation  
1U −=ζ χ                              (20) 

one can change the kχ  variables to the kζ  coordinates that diagonalizes the ρ  
matrix  

1D U Uρ−=                             (21) 

where  

( )1 2, , , ND diag λ λ λ=                         (22) 

and U is the change basis matrix, with 1 tU U− = , ( )det 1U = . In this diagonal 
coordinate system, the diffusion equation read finally  

2

2
1

1
2

N

i
i it
λ

ζ=

∂Ψ ∂ Ψ
=

∂ ∂∑                          (23) 

Now this equation is studied in terms of the behavior of the eigenvalues iλ .  

4. The Geometry of the ρ Matrix  

The ρ  matrix in (3) can be characterized completely for the 
( )1

2
N N

M
−

=  dimen-  

sional vector  

( )( )12 13 14 1, , , , , 1 1ijN Nρ ρ ρ ρ ρ−= − ≤ ≤r                 (24) 

which lies inside of an M dimensional hypercube centering in the origin and of length 2. 
Thus, the ρ  matrix is a function of r : ( )ρ ρ= r . Note that, for some point r  
inside of the hypercube, the determinant of the ρ  matrix vanishes. For example, for 
the vertex  

( ) ( )1,1,1, ,1 det 0ρ= ⇒ =r                      (25) 

In fact, exists a whole surface inside the hypercube, where the determinant of ρ  
vanishes. This surface, called Kummer surface KΣ  in algebraic geometry [19]-[22], is 
defined by the equation  

( )

12 13 14 1

12 23 24 2

1 2 3 4

1
1

det det 0

1

N

N
K

N N N N

ρ ρ ρ ρ
ρ ρ ρ ρ

ρ

ρ ρ ρ ρ

 
 
 ∈Σ ⇔ = =
 
 
 

r r





    



      (26) 

In fact, one can think of the hypercube as the disjoint union of the subset of point or 
surfaces CΣ  of constant C determinant value:  

( )

12 13 14 1

12 23 24 2

1 2 3 4

1
1

det det

1

N

N
C

N N N N

C

ρ ρ ρ ρ
ρ ρ ρ ρ

ρ

ρ ρ ρ ρ

 
 
 ∈Σ ⇔ = =
 
 
 

r r





    



      (27) 
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Let r  an arbitrary vector in M  and let ( )φ r  the determinant of ρ  in each 
point, that is ( ) ( )( )detφ ρ=r r . Note that ( )φ r  is a polynomial function in terms of 
the r  coordinates.  

The vector η  given by the M dimensional gradient ( )φ= ∇r rη  is perpendicular 
to the level surfaces CΣ  and gives the direction for greater growth of the function 
( )φ r . Note also that the components of this vector are also polynomial functions of the 

r  coordinates, so ( )= rη η  is a continuous vector function.  
Consider now a point 0 K∈Σr , that is, ( )0 0φ =r . As φ  and η  are continuous, 

there is a neighbor of 0r  on KΣ , such that for 0>  the vector 0 C+ = + ∈Σr r η  
with 0C > , whereas the vector 0 C− = − ∈Σr r η  with 0C < , due to the φ  function 
growths along the η  direction. Thus, the Kummer surface KΣ  separates spacial 
regions with positive ρ  determinant from that with negative ρ  determinant.  

In its diagonal form, Equation (26) is  

1

2

0 0 0 0
0 0 0 0

det 0

0 0 0 0

K

N

λ
λ

λ

 
 
 ∈Σ ⇔ =
 
 
 

r





    



                (28) 

where the ( )i iλ λ= r , that is  

( ) ( ) ( ) ( )1 2 0K nφ λ λ λ∈Σ ⇔ = =r r r r r                  (29) 

Note that Equation (29) implies that there is at least one eigenvalue that is zero over 
all the Kummer surface. But on KΣ  other eigenvalues can also become null. Thus, the 
Kummer surface is a variable ρ  rank surface.  

As ( )φ r  is equal to ( ) ( ) ( )1 2 nλ λ λr r r , the vector η  can be written as  

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
1 2 1 2

1 2

n n

n

λ λ λ λ λ λ

λ λ λ

= ∇ + ∇      
+ ∇  

r r

r

r r r r r r r

r r r

 



η
         (30) 

Let say that 1λ  is the zero eigenvalue over all Kummer surface. Then over KΣ , the 
vector η  is given by  

( ) ( ) ( ) ( )1 2 nλ λ λ= ∇  rr r r rη                     (31) 

If 
nKΣ  is the subregion of KΣ  over which there are 1n >  null eigenvalues, then 

by (31)  

( ) 0,
nK= ∀ ∈Σr rη                         (32) 

Thus higher order rank subregions 
nKΣ  of the Kummer surface are characterized by 

the fact that the η  vector vanishes on them.  
Consider now, the origin ( )0,0, , 0O =r   where ( ) 1Oφ =r . It is easy to show that 

for points r  near to the origin, the function φ  goes as ( ) 21φ ≈ −r r  by expanding 
φ  in Taylor series around the origin and keeping the least order terms in the 
expansion. The η  vector near the origin is then 2= − rη  and its an inward radial 
vector. So near the origin, the constant determinant surfaces CΣ  are given 
approximately by M di- mensional spheres and φ  growths inward to the origin.  
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Let Γ  a curve that starts in the origin and that is normal to all CΣ  surfaces, that is, 
its tangent vector is parallel to the −η  vector in each point. Because, near the origin 
the vector −η  is radial, one can reach any point of the space starting from the origin 
using such a curve. Moving along Γ  in the outer direction, the φ  function always 
decreases from its initial value 1. Thus, at some point 0r  in Γ , the φ  function 
vanishes. Thus means that the Kummer surface KΣ  must contain a closed subsurface 

0Σ  that enclosed the origin. Then inside of this closed subsurface 0Σ  the determinant 
of the ρ  matrix must be positive and outside 0Σ  there are points where the 
determinant of the correlation matrix is necessarily negative. Note that 0Σ  can be 
contained totally inside the hypercube or can cut it in different regions with positive or 
negative determinant values respectively.  

Thus, outside 0Σ  there are regions where the determinant  

1 2 0Nλ λ λ <                            (33) 

so at least one of the eigenvalues must be negative outside 0Σ . Inside 0Σ  however  

1 2 0Nλ λ λ >                            (34) 

This implies that pairs of eigenvalues can be negative. But inside 0Σ  the eigenvalue 
cannot be negative. To prove that, consider the origin Or  where all eigenvalues 

( )i i Oλ λ= r  are equal to one. When r  moves outward along a curve Γ  that start at 
the origin, each eigenvalue ( )i iλ λ= r  will change its value from its initial positive 
value 1, but cannot become negative. If ( ) 0i iλ λ= <r  for some points r  along Γ  
inside of 0Σ , then there is a point 0r  where 0iλ = . This implies that the vector r  
would cross the surface 0Σ , but it is impossible because r  is inside of 0Σ  where 
det 0ρ > . Then inside the surface 0Σ  all eigenvalues of the correlation matrix are 
positive.  

In order to grasp the above ideas in detail the case of three assets is studied in the 
next sub section.  

The Geometry of the N = 3 Assets Case  

The ρ  matrix, for the three assets case, is equal to  

12 13

12 23

13 23

1 1
1 1

1 1

x y
x z
y z

ρ ρ
ρ ρ ρ

ρ ρ

   
   = =   

  
  

                  (35) 

where the vector ( )12 13 23, ,ρ ρ ρ=r  is written as ( ), ,x y z=r . For this parameteri- 
zation the determinant of the ρ  matrix is  

( ) 2 2 2det 2 1xyz x y zρ = − − − +  

The constant determinant CΣ  surfaces ( )( )det Cρ =r  in the interior of the 
hypercube are shown in Figure 1, for some positive values between 0 1C< < . Instead, 
in Figure 2, some surfaces for negative C values are displayed with 3 0C− < < .  

The Kummer KΣ  surface is given by the condition ( )det 0ρ =r , that is  
2 2 22 1 0xyz x y z− − − + =                      (36) 
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Figure 1. (a) 0.9C = , (b) 0.7C = , (c) 0.5C = , (d) 0.3C = , (e) 0.1C = . 

 
From (36) one found that the Kummer 0Σ  subsurface inside the hypercube is given 

by the parametric equations  

( ) 2 2 2 2, 1z z x y xy x y x y±= = ± − − +  (37) 

Figure 3 shows the Kummer superior subsurface 0
+Σ  given by ( ),z z x y+= , the 

Kummer inferior subsurface 0
−Σ  given by ( ),z z x y−=  and the complete Kummer 

subsurface 0Σ .  
Because 0Σ  separates a region with det 0ρ >  from that with det 0ρ <  and due 

to the origin ( )0,0,0=r  the determinant is one, then inside of 0Σ  the determinant 
of the ρ  matrix must be positive, which is consistent with Figure 1. The region 
situated between 0Σ  and the cube has negative determinant in this case.  

In terms of its diagonal form, the ρ  matrix inside or outside 0Σ  where det 0ρ ≠ , 
is  
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Figure 2. (a) 0.1C = − , (b) 0.5C = − , (c) 1C = − , (d) 2C = − , (e) 3C = − . 

 

( )
( )

( )

1

2

3

, , 0 0
0 , , 0
0 0 , ,

x y z
x y z

x y z

λ
λ

λ

 
 
 
 
 

                    (38) 

where the three eigenvalues 1 0λ ≠ , 2 0λ ≠  and 3 0λ ≠  when ( ) 0, ,x y z= ∉Σr .  
On the Kummer superior subsurface 0

+Σ , the diagonal form of the ρ  matrix is  

( )
( )

1

2

, 0 0
0 , 0
0 0 0

x y
x y

λ
λ

+

+

 
 
 
 
 

                          (39) 

where  

( ) 2 2 2 2 2 2
1

3 1, 1 8 8 1
2 2

x y x y xy x y x yλ+ = + + + − − +              (40) 
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Figure 3. (a) Kummer superior subsurface 2 2 2 2
0 : 1z xy x y x y+ +Σ = + − − + , (b) Kummer in- 

ferior subsurface 2 2 2 2
0 : 1z xy x y x y− −Σ = − − − + , (c) complete Kummer subsurface 0Σ . Note 

that the Kummer subsurface 0Σ  is closed and its is completely inside the hypercube in this case. 
Thus the region between 0Σ  and the hypercube has negative ρ  determinant for the three 
assets system. 
 
and  

( ) 2 2 2 2 2 2
2

3 1, 1 8 8 1
2 2

x y x y xy x y x yλ+ = − + + − − +            (41) 

Figure 4 gives the eigenvalues ( )1 ,x yλ+  and ( )2 ,x yλ+  as functions of x and y.  
For the Kummer inferior subsurface 0

−Σ , the diagonal form of the ρ  matrix is 
instead  

( )
( )

1

2

, 0 0
0 , 0
0 0 0

x y
x y

λ
λ

−

−

 
 
 
 
 

                       (42) 
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Figure 4. (a) ( )1 ,x yλ+ , (b) ( )2 ,x yλ+ . 

 
where  

( ) 2 2 2 2 2 2
1

3 1, 1 8 8 1
2 2

x y x y xy x y x yλ− = + + − − − +            (43) 

and  

( ) 2 2 2 2 2 2
2

3 1, 1 8 8 1
2 2

x y x y xy x y x yλ− = − + − − − +            (44) 

Figure 5 gives the eigenvalues ( )1 ,x yλ−  and ( )2 ,x yλ−  as functions of x and y.  
Note that the eigenvalues ( )1 ,x yλ+  and ( )1 ,x yλ−  are always greater than zero, but 
( )2 ,x yλ+  and ( )2 ,x yλ−  are zero for the extreme values of the correlation parameter 

1x = ±  and 1y = ± . Figure 6 shows both eigenvalues ( )2 ,x yλ+  and ( )2 ,x yλ−  in 
the same graph. It is possible to see clearly that the ( )2 ,x yλ  proper value becomes 
equal to zero only for the extreme correlations value cases  

( ) ( ) ( ) ( )1,1,1 , 1, 1, 1 , 1,1, 1 , 1, 1,1= = − − = − − = − −r r r r            (45) 

which are the vertexes of the Kummer 0Σ  subsurface in Figure 3 or the four base 
points of Figure 6.  

Thus, depending on which region of the three dimensional cube the vector ( ), ,x y z=r  
is lying, the correlation matrix ρ  has two null eigenvalues, one null eigenvalue or it 
can be invertible. Thus the rank of the ρ  matrix changes when r  moves along the 
Kummer surface.  

5. Pricing, the Wei-Norman Theorem, Propagators and ΣK  

The problem of pricing the multi-asset option Π  is now tackled by taking into 
account the geometrical properties of the correlation ρ  matrix analyzed in the 
Section 3. In order to do that one needs first to solve the Equation (23). For this, the 
Wei-Norman theorem [23]-[26] is applied. In this particular case this theorem estab- 
lishes that the solution of (23) can be writing as  

( ) ( ) ( ), , 0 , 0t U tΨ = Ψζ ζ                         (46) 
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Figure 5. (a) ( )1 ,x yλ− , (b) ( )2 ,x yλ− . 

 

 
Figure 6. The 2λ  eigenvalue as function of ( ),x y . 

 
where  

( ) ( )
1, 0 e k kN a t L

kU t   
=

=∏                             (47) 

with  

( ) ( ) ( )
0

1 1d
2 2

t
k k ka t t tλ λ= =∫ r r                        (48) 

and  
2

2k
k

L
ζ
∂

=
∂

                                (49) 

that is  

( )
( )

( )
2

2
1
2

1, e , 0
k

k
t

N
kt

λ
ζ

 ∂
 
 ∂ 

=
Ψ = Ψ∏

r

ζ ζ                      (50) 
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by inserting N one dimensional Dirac’s deltas, one can write the above equation as  

( )
( )

( ) ( )
2

2
1
2

1 1, e d ,0
k

k
t

N N
m m mk mt

λ
ζ ζ δ ζ ζ

 ∂
 
 ∂ 

= =
 ′ ′ ′Ψ = − Ψ ∏ ∏ ∫

r

ζ ζ           (51) 

or as  

( ) ( ) ( ), , | 0 , 0 dt K tΨ ′ ′ ′Ψ = Ψ∫ζ ζ ζ ζ ζ                    (52) 

where the propagator KΨ  is defined by  

( )
( )

( ) ( )
2

2
1
2

1, | 0 e
k

k
t

N N
kK t

λ
ζ δ

 ∂
 
 ∂ 

Ψ =
 ′ ′= − ∏

r

ζ ζ ζ ζ               (53) 

with ( ) ( )Nδ ′−ζ ζ  the N dimensional Dirac’s delta. Now using the Fourier expansion  

( ) ( )
( )

( )d e
2π

N i
Nδ ′⋅ −′− = ∫ pp ζ ζζ ζ  (54) 

the propagator can be written finally as the product  

( )
( ) ( )21

2
1

d, | 0 e
2π

k k k k ktp ipN k
k

pK t
λ ′− + −

Ψ =

 
′ =  

 
∏ ∫

r ζ ζ
ζ ζ                (55) 

The Propagator Inside Σ0 

When r  is inside of 0Σ , all eigenvalues ( )kλ r  are positive, so the N integrations in 
(55) can be performed to give [27] [28]  

( )
( )2

2
1

1, | 0 e
2π

k k

kN t
k

k

K t
t

ζ ζ
λ

λ

′−
−

Ψ =

 
 ′ =
 
 

∏ζ ζ                 (56) 

or  

( )
( )

( )2

1 2

1 2

1, | 0 e
2π

N k k

kk t

N
N

K t
t

ζ ζ
λ

λ λ λ
=

′−
−

Ψ

∑
′ =



ζ ζ               (57) 

By using transformations (15), (16), (17) and (18) one can write the propagator for 
the option price ( ),τΠ S  in the ( ),τS  space as  

( ) ( )( )
( )( ) ( )

( )
( )

1

2

1 2 1 2

exp
, | e

2π det

t

T

N
N N

r T
K T

T S S S

ρ

ττ
τ

τ ρ σ σ σ

− 
 − −  

Π

− −
′ =

′ ′ ′−
S S

 

α α

    (58) 

with  

( )
( )21ln

2
,

i
i

i
i i i i

i

S r T
S

S S
σ τ

σ

   + − −   ′   ′= =α α                (59) 

which is the usual form of the propagator in the S space (see for example [3] [7]). Note 
this form of the propagator is valid only when ( )det 0ρ > . So (58) can be applied 
inside the closed subsurface 0Σ  or some region between 0Σ  and the interior of the 
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hypercube that verifies ( )det 0ρ >  and have only positive eigenvalues.  

6. The Propagator for the Kummer Surface ΣK  

In this section, an expression for the propagator over the Kummer surface KΣ  is 
obtained. It is assumed that a region 

NBKΣ  of KΣ  that has AN  non zero eigenvalues 
and B AN N N= −  null eigenvalues. Due to it is on the KΣ  surface, the Equation (26) 
implies that one of the coordinates of the r  vector, is determined by the other 1M −  
coordinates. These independent coordinates are called 1 2 1, , , Mx x x − . Thus in this 
section, the vector r  is an M dimensional vector that depends on 1M −  in- 
dependent coordinates. In this situation the propagator in (55) gives  

( )
( ) ( ) ( )21

2
1 1

dd, | 0 e e
2π 2π

k k k k k j j jA B
tp ip ipN N jk

k j

ppK t
λ ζ ζ ζ ζ′− + − ′−

Ψ = =

   
′ =    

  
∏ ∏∫ ∫

r
ζ ζ       (60) 

By performing the integrations  

( )
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t
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K t
t

ζ ζ
λ

δ ζ ζ
λ λ λ

=
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−

Ψ =

∑

′ ′= −∏


ζ ζ             (61) 

If the N dimensional vector ζ  is separated in two parts as  

11

1 1

AA

A

B

NN A

N B

N N

ζζ

ζζ
ζ ζ

ζ ζ

+

       
          = = =                        







ζζ ζ
                      (62) 

the above propagator can be written in a more compact form as  

( )
( ) ( )

( ) ( )
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1
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2π det

t
A A A A A
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A

D
Nt

B BN
A

K t
t D

δ
−′ ′− −

Ψ ′ ′= −
ζ ζ ζ ζ
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where  

1

2

0 0
0 0

0 0
A

NA

D

λ
λ

λ

 
 
 =
 
 
 





   



                         (64) 

is the reduced diagonal ρ  matrix on the Kummer surface KΣ . If one separates the 
vector χ  in A and B components as  

A

B

 
=  
 

χ
χ

χ
                               (65) 

then relation (20) induces the transformation  
1 1

1 1
A AAA AB

B BBA BB

U U
U U

− −

− −

    
=     

    

ζ χ
ζ χ

                        (66) 
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where 1
AAU − , 1

ABU − , 1
BAU −  and 1

BBU −  are the matrices that result from sectioning 1U −  
into A and B components.  

The quadratic term in the exponential of (61) can be expressed in the Aχ  and Bχ  
components as  

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

1 1 1 1 1 1

1 1 1 1 1 1

t
A A A A A

t tt t
A A AA A AA A A B B AB A AA A A
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A A AA A AB B B B B AB A AB B B

D

U D U U D U

U D U U D U

−

− − − − − −

− − − − − −

′ ′− −

   ′ ′ ′ ′= − − + − −   

   ′ ′ ′ ′+ − − + − −   

ζ ζ ζ ζ

χ χ χ χ χ χ χ χ

χ χ χ χ χ χ χ χ

  (67) 

Now, from (66)  

( ) ( ) ( )1 1
B B BA A A BB B BU U− −′ ′ ′− = − + −ζ ζ χ χ χ χ                 (68) 

The Dirac’s delta in (63) implies that  

( ) ( )1 10 BA A A BB B BU U− −′ ′= − + −χ χ χ χ                    (69) 

The above equation permits writing the vector ( )B B′−χ χ  in terms of ( )A A′−χ χ  
as  

( ) ( )1
B B BB BA A AU U −′ ′− = − −χ χ χ χ                     (70) 

replacing in (67) one can write the quadratic term as  

( ) ( ) ( ) ( )1 1
K

t t
A A A A A A A A AD ρ− −

Σ′ ′ ′ ′− − = − −ζ ζ ζ ζ χ χ χ χ             (71) 

where 1
K

ρ−
Σ  is defined by  

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

K

t t

AA A AA AB BB BA A AA

t t
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U D U U U U D U

U D U U U U U U D U U U
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Σ
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   = +   

   + +   

       (72) 

From (66)  

d d d d d dA B A B= = =ζ ζ ζ χ χ χ                      (73) 

Using (68) and (71) in (52), the option price can be written as  

( )

( ) ( )

( ) ( )
( ) ( ) ( )( ) ( )

1

2
1 1e, , , , 0 d d

2π det

t
A A A AK
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t U U
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ρ

δ

−
Σ′ ′− −

− −′ ′ ′ ′ ′ ′Ψ = − + − Ψ∫

χ χ χ χ

χ χ χ χ χ χ χ χ χ χ  (74) 

Integrating over d B′χ  gives  

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

1

2

1

e 1, , , , 0 d
det2π det

t
A A A AK

A

t

A B A B AN
BBA

t
Ut D

ρ−Σ′ ′− −

−
′ ′ ′Ψ = Ψ∫r

χ χ χ χ

χ χ χ χ χ        (75) 

where B′χ  must be evaluated from (70) in terms of Bχ  and ( )A A′−χ χ  as  

( )B B A Aγ′ ′= + −χ χ χ χ                        (76) 

where the rectangular B AN N×  matrix γ  is defined by  
1

BB BAU Uγ −=                             (77) 
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It must be noted that 1U − , the eigenvalues iλ , and the rectangular matrix γ  are 
functions of the vector r  that lies on the null surface KΣ . Thus the option price is 
also a function of r . Using (15), (16), (17) and (18) one can write the option price in 
the ( ),τS  space as ( ) ( ),τΠ r S  and is given by  

( ) ( )

( ) ( )
( )

( )( ) ( )

( )

( )
( )

1

2

1
1 1

, , de e, ,
det2π det

t
A AK
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T r T
A B A

A B N
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T
S SUT D
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τ τ

τ
σ στ

−
Σ

− − −

−

′ ′Ψ ′
Π =

′ ′−
∫r

S S SS S
 

α α

  (78) 

where the components of the α  are given by  

( )21ln
2

, 1, ,

j
A

jj
Aj

A A
j

S r T
S

j N
σ τ

α
σ

   + − −   ′   = =               (79) 

and the components of the vector B′S  are given in terms of AS , A′S  and BS  
according to  

( )2 2

1

1 1
2 2

1 e , 1, ,

Ni A iij i ij jj jjA
r r Tj

Ni i A
B B Bjj

A

SS S i N
S

σ σγ σ γ σ τσ σ=

    − + − −    
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∑ 
  ′ = =  ′   

∏         (80) 

with ijγ  the components of the rectangular matrix γ   
1 , 1, , , 1, ,ij BB BA B Aij

U U i N j Nγ − = = =                    (81) 

When r  moves over the Kummer surface KΣ , the rank of the ρ  matrix can 
change, so the dimensions of AN  and B AN N N= −  also change, but Equation (78) 
is always valid.  

7. The Propagator Outside Σ0  

When the vector r  is lying outside the Kummer subsurface 0Σ , there are regions 
where the determinant of the correlation matrix is negative. This implies that the 
propagator given in (58) becomes complex. But, worse than that, in this case one of the 
eigenvalues kλ  is negative, so the propagator given in (57) generates an exponential 
growth in the associated kζ  coordinate. Then the convolution in (52) is not well 
defined. Thus, one cannot price the option in regions outside the Kummer subsurface 

0Σ  that have negative ρ  determinant.  

8. Conclusions and Further Research  

In this research, the existence of the solution of the multi-asset Black-Scholes model has 
been analyzed in detail. It has been shown that the correlation parameter space, which 
is equivalent to an N dimensional hypercube, limits the existence of a valid solution for 
the multi-asset Black-Scholes model. Particularly, it has been demonstrated that inside 
of this hypercube there is a surface, called the Kummer surface KΣ , where the 
determinant of the correlation matrix ρ  is zero, the usual formula for the propagator 
of the N asset Black-Scholes equation is no longer valid. In particular, the case for three 
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assets and its implied geometry has been studied in detail when the determinant of the 
correlation matrix is zero. Finally, by using the Wei-Norman theorem, the propagator 
over the variable rank surface KΣ  for the general N asset case has been computed, 
which is applicable over all the Kummer surface, whatever be the rank of the ρ  
matrix. This formulation corrects the past solution of this problem and its extensions.  

As future research, most of the papers related to the multi-asset Black-Scholes model 
must be revisited in line of our results, as well as others where it is implicitly assumed 
that a well behaved multivariate Gaussian distribution must exist, as is the case of the 
stochastic volatility family (see for instance [29] [30]). 
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